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One of the methods of assessing the extent of bioavailability is to determine the total 
amount of drug excreted in the urine (i.e. infinity value). Several methods for the deter- 
mination of the infinity value from terminal mono-exponential (linear phase in semiloga. 
rithmic plot) of a bi-exponential urinary excretion profile are available, some of which 
have been reviewed by Newburger et al. (1979). These methods may require collection of 
urine samples over relatively long periods to ensure the sample being in the terminal 
mono-exponential phase. For this reason Newburger et al. (1979) have derived an equa- 
tion which allows infinity values for bi-exponential processes to be predicted in the early 
non-linear phase when 5 urine samples are taken at equal time intervals. The equation is 
applicable to both a one-compartment model with first-order absorption and a two- 
compartment model with bolus intravenous injection. 

However, the authors have shown that the equation is very sensitive to the number of 
decimal places appearing in the data used. In other words, experimental data with differ- 
ent numbers of decimal places may produce a large error in the predicted infinity value. 

In this communication two fairly simple equations for the calculation of the infinity 
value for the two models (i.e. a one-compartment model with first-order absorption and 
a two-compartment model with bolus intravenous injection) are derived using the early 
non-linear data. The equations are discussed from the standpoints of accuracy of calcu- 
lated infinity value, number of urine samples employed, and sensitivity to number of 
decimal places in data. Details of the derivations are as follows: 

(1) The one compartment model with first-order absorption. The urinary excretion 
rate of a drug, dU/dt, following first-order input into a one-compartment model is given 
by the following equation (Gibaldi and Perrier, 1975): 

dU =--'ekekaFD -Kt _--.kekaFD e_ka t (1) 
dt k a - K k s - K 

where ke, ka, and K are first-order rate-constants for urinary excretion, absorption and 
elimination, respectively. F is fraction of dose D absorbed, and t is the midpoint of the 
urine collection period. Eqn. 1 can be written as: 

R = A x -  Ay (2) 
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where 

dU kekaFD e_Kt e-kat 
R:" dt ' A -  k a _ K  , x= , and y= . 

If urinary excretion rates are determined at equal time intervals, then equations for suc- 
cessive rates are as follows: 

= Ax- Ay (3) 

R2 = Ax 2 - Ay 2 (4) 

R3 = Ax 3 - Ay 3 (5) 

Dividing both sides of Eqns. 4 and 5 by Eqn. 3 and subsequent simplification will give the 
following expressions: 

R2 
--=x+y (6) 
RI 

R._.33 = x2 + y2 + xy (7) 
RI 

Eqns. 6 and 7 may be written as: 

R2 ~2 
R'~l! = (x + y)= (8) 

R3 = (x + y)2 _ xy (9) 
Rl 

Subtraction of Eqn. 9 from Eqn. 8 yields: 

For the one-compartment model with first-order absorption the amount of intact drug 
remaining robe excreted is given by the following eq,Jation (Gibaldi and Perrier, 197~): 

U _ U  = U=._._k a .e_K t U . K  .e_ka t (II) 
k a -  K k a -  K 

where U ,  is the amount of intact drug ultimately excreted in the urine (the infinity 
value), U is the cumulative amount of intact drug excreted: at time t, and k a and K have 
been defined previously. Eqn. I l may be written as Eqn. 12: 
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U.o - U = B x -  Ey (12) 

where 

B Uooka E U=K e_Kt e_ka t - ~  - ~  X = , and y =  . 
k a - K ' k a - K ' 

For successive equal time intervals (the times that Rs are &~termined) the corresponding 
equations are: 

U..  - U~ = Bx - Ey (13) 

U® - U2 = Bx 2 - Ey 2 (14) 

U= - Ua = Bx a - Ey a (15) 

Solving Eqn. 13 for B gives Eqn. 16" 

U.. - U ~  +Ey  
B = (16)  

X 

Substitution of B from Eqn. 16 into Eqns. 14 and 15 results in the following equations: 

U® - U2 = xU~ - xU ~ + Exy - Ey 2 (17) 

U .  - Us = x2U.. - x2U~ + Ex2y - Ey a (18) 

Solving Eqn. 17 for E gives: 

U= - U2 - x U .  + xU~ 

y(x- y) 
=E (19) 

Substitution of E from Eqn. 19 into Eqn. 18 and solving the resulting equation for U..  

yields the following equation: 

U~ = U3 + xyU1 - U2(x + y) 
1 + x y  - (x  + y)  

(20) 

Substitution of (x + y) and xy from Eqns. 6 and 10, respectively, into Eq~. 20 gives: 

RI=U3 + UI(R2 2 - R I R 3 ) -  U2RIR2 

U. .  = RI 2 + R2 2 - RIRa - RIR2 ' 
(21) 

The calculation of U .  by Eqn. 21 requires 5 urine samples (including zero time sample). 
As with the equation of Newburger et al. (1979), Eqn. 21 is independent of the relative 

value of ka and K. 
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(2) The two~:ompartment model with bolus intran,enous infection. The equation 
describing the urinary excretion rate of a drug, dU/dt, ,6 th  the two.compartment model 
after bolus intravenous injection is given by the following equation (Gibaldi and Perrier, 
1975): 

_dU= k'eD(a - k2,) . e_at .I k'eD(k2 t - 3 ) .  e_at (22) 
dt a-3 ~ - 3  

where k~ = urinary excretion rate-constant, D = intravenous dose, t = midpoint of urine 
collection period, k2t = rate-constant for transfer of the drug from the peripheral com- 
partment to the central compartment, c~ and/3 = complex constants composed of the sys- 
tem of microparameters. 

Eqn. 22 may be written as: 

R = Lz + Mv (23) 

where 

dU k'eD(a - k2t) k'eD(k21 - 3) e_at 
R=-dT, L--- M= , z= a-3 ' a - 3  

and v = e "at. Using the method of equal time intervals, the following equations may be 
written as: 

Rl = Lz + Mv (24)  

Rz = Lz 2 + Mv 2 (25) 

R3 = Lz 3 + Mv 3 (26) 

R4 = Lz* + Mv 4 (27)  

Solving Eqn. 24 for L and substitution of the resulting equation for L into Eqns. 25, 26 
and 27 would lead to the following Eqns: 

R2 = R~z - Mvz + My 2 

R3 = Rtz 2 : Mvz ~ +Mv 3 

R4 = R~z 3 - Mvz 3 + My 4 

(28) 

.(29) 

(3o) 

Again solving Eqn. 28 for M and substitution of the resulting equation for M into Eqns. 
29 and 30 would yield: 

R3 --" - R t v z  + R2(v + z) (31 )  
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R4 = --Rlvz(v + z) + R2(v 2 + z 2 + vz) (32) 

Eqns. 31 and 32 may be written as: 

Ra(v + z)= -R1vz(v + z) + R2(v + z) 2 0 3 )  

R4 = -RIvz(v + z) + R2(v + z)= - R2vz (34) 

Subtraction of Eqn. 34 from Eqn. 33, and then simplification and rearrangement of the 
resulting equation would yield: 

R4 = -R2vz + R3(v + z) (35) 

Solving Eqns. 31 and 35 for the terms (vz) and (v + z) yields: 

R2R4 - R~ 
(vz)  = R~R3 - R 2 (36)  

(v + z)  = Rl_____~ - R2R3 
R~R3 - R~ (37)  

The equation describing the amount of unchanged drug remaining to be excreted after 
bolus intravenous injection of a drug with the two-compartment model is as follows 
(Gibaldi and Perrier, 1975): 

U .  - U - U*"'Ocl° - 13) . e. .~ t + U.(o~ - k t o ) .  e_0t (38)  
e - ~  ~ - ~  

where Uo. is the inf'mity value, U is cumulative drug amount excreted to time t, k~o is 
elimination rate-constant of the drug from the central compartment, and a and ~3 have 
been defined previously. Eqn. 38 can be written as: 

U~, - U = Nz + Pv (39) 

where 

U . ( k l o  --/3) U®(cX - k l o )  e_at  N= , P=  , z=  , and a - ~  c ~ - ~  

v = e "~t. For successive equal time intervals (the times that Rs were determined), the 

equat ions  are: 

U . -  UI = Nz + Pv (40) 

U,. - U2 : Nz 2 +'P v= (41) 

U® - U3 = Nz 3 + Pv 3 (42) 



6 8  

Solving Eqn. 40 for N and ~ubstituting the resulting equatiion for N into Eqns. 41 and 42 
would give the following exr~ressions: 

U~ - l J2 = zU** - zUI - Pvz + Pv 2 (43) 

U., - Us = z2U® - z2Ut - pvz2 + Pv3 (44) 

Solving Eqn. 43 for P and substituting the resulting equation for P into Eqn. 44 and rear- 
rangement would yield Eqn. 45: 

U ,  = U3 + UIvz - U2(v + z) (45) 
1 + v z -  ( v + z )  

Substitution for the terlns (,Jz) and (v + z) from Eqns. 36 and 37 intc0 Eqn. 45 gives: 

U~ = U3(RIR3 - R22) + U~(R2R4 - R32) - U2(RIR4 - R::R3) (46) 
(RIR3 - R22~ + (R2R4 - R 3 2 )  - ( R I R 4  - R2R3) 

Eqn. 46 requires 6 urine samples (including zero time sample) and similar to the equation 
of Newburger et al. ( t979) is independent of the relative value of the rate-constants 
involved in the process. Applying Eqn. 46 to the first 5 data points (plus zero time data 
point, i.e. O) in Table ~l of the paper of Newburger et al. (1979), a predicted infinity 
value of 114.2 mg was obtained whereas using their equation, the value calculated by the 
authors from the same data was I 16.5 mg. The experimentally obtained value reported in 
that paper was 113.9 rag. Eqn. 46 appears to be less sensitive to the number of decimal 
places in data than the equation of Newburger et al. (1979). Using data given in Table IV 
of that paper and applying Eqn. 46 to the data and figures with one, two, and three 
decimal places, the predicted values of 104.63 (4.6% error), 99.78 (0.22% error), and 
99.94 (0.06% error) were obtained, respectively. Using the, equation of Newburger et al. 
(1979) the corresponding values were 48.3 (51.7% error), 108.98 (8.98% error), and 
99.96 (0.04% error), respectively. 

It should be borne in mind that the R values in Eqns. 21 and 46 are actually the 
instantaneous excretio~ rate valoes of drug and that experimentally one can only deter- 
mine the average rates. However, as Martin (1967) has shown, the shorter the equal time 
interval for urine collection relative to biological half-life of drug, the closer the average 
rates to the instantaneo~as rates. 
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